\"\"

The function is \"k(x)=(6)^{x}\".

Make the table of values to find ordered pairs that satisfy the function.

Choose values for \"x\" and find the corresponding values for \"y\"

\"x\" \"k(x)=(6)^{x}\" \"(x,
\"-4\" \"f(-4)=(6)^{-4}=0.0007\" \"(-4,
\"-3\" \"f(-3)=(6)^{-3}=0.004\" \"(-3,
\"-2\" \"f(-2)=(6)^{-2}=0.02\" \"(-2,
\"-1\" \"f(-2)=(6)^{-1}=0.1\" \"(-1,
\"0\" \"f(0)=(6)^{0}=1\" \"(0,
\"1\" \"f(1)=(6)^{1}=6\" \"(1,
\"1.5\" \"f(1.5)=(6)^{1.5}=14.69\" \"(1.5,

\"\"

Graph:

1. Draw a coordinate plane.

2. Plot the coordinate points.

3. Then sketch the graph, connecting the points with a smooth curve.

\"\"

Observe the above graph :

Domain of the function is all real numbers.

Range of the function is \"(0,.

The function does not have the x-intercept.

\"y\" - intercepts is \"1\".

The line \"y=L.\" is the horizontal asymptote of the curve \"y=f(x)\".

if either \"\\lim_{x or \"\\lim_{x.

\"\\lim_{x

\"\\\\=\\6^{-\\infty}}\\\\\\\\=\\frac{1}{6^{\\infty}}\"

\"=0\".

Observe the above graph the function does not have vertical asymptote.

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function is continuous for all real numbers.

Increasing over the interval : \"\\left.

\"\"

\"\"

Observe the above graph :

Domain of the function is all real numbers.

Range of the function is \"(0,.

The function does not have the \"x\"-intercept.

\"y\" - intercepts is \"1\".

horizontal asymptote of the function is \"y=0\".

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function  \"k(x)\" Increasing over the interval : \"\\left.