\"\"

The function is \"m(x)=-(0.25)^{x}\".

Make the table of values to find ordered pairs that satisfy the function.

Choose values for \"x\" and find the corresponding values for \"y\"

\"x\" \"m(x)=-(0.25)^{x}\" \"(x,
\"-2\" \"m(-2)=-(0.25)^{-2}=-16\" \"(-2,
\"-1.5\" \"m(-1.5)=-(0.25)^{-1.5}=-8\" \"(-1.5,
\"-1\" \"m(-1)=-(0.25)^{-1}=-4\" \"(-1,
\"0\" \"m(0)=-(0.25)^{0}=-1\" \"(0,
\"1\" \"m(1)=-(0.25)^{1}=-0.25\" \"(1,
\"2\" \"m(2)=-(0.25)^{2}=-0.06\" \"(2,
\"3\" \"m(3)=-(0.25)^{3}=-0.01\" \"(3,

\"\"

Graph:

1. Draw a coordinate plane.

2. Plot the coordinate points.

3. Then sketch the graph, connecting the points with a smooth curve.

\"\"

Observe the above graph :

Domain of the function is all real numbers.

Range of the function is \"(-.

The function does not have the \"x\"-intercept.

\"y\" - intercepts is \"-1\".

The line \"y=L.\" is the horizontal asymptote of the curve \"y=f(x)\".

if either \"\\lim_{x or \"\\lim_{x.

\"\\lim_{x

\"\\\\=-(0.25)^{-\\infty}

\"=0\".

\"y=0\" is the horizontal asymptote of the function.

Observe the above graph the function does not have vertical asymptote.

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function is continuous for all real numbers.

Increasing over the interval : \"\\left.

\"\"

\"\"

Observe the above graph :

Domain of the function is all real numbers.

Range of the function is \"(-.

The function does not have the \"x\"-intercept.

\"y\" - intercepts is \"-1\".

The horizontal asymptote of the function is \"y=0\".

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function  \"m(x)\" Increasing over the interval : \"\\left.