\"\"

The function is \"q(x)=\\left.

Make the table of values to find ordered pairs that satisfy the function.

Choose values for \"x\" and find the corresponding values for \"y\"

\"x\" \"q(x)=\\left \"(x,
\"-1.5\" \"q(-1.5)=\\left \"(-1.5,
\"-1\" \"q(-1)=\\left \"(-1,
\"0\" \"q(0)=\\left \"(0,
\"1\" \"q(1)=\\left \"(1,
\"2\" \"q(2)=\\left \"(2,
\"3\" \"q(3)=\\left \"(3,
\"4\" \"q(4)=\\left \"(4,

\"\"

Graph:

1. Draw a coordinate plane.

2. Plot the coordinate points.

3. Then sketch the graph, connecting the points with a smooth curve.

\"\"

Observe the above graph :

Domain of the function is all real numbers.

Range of the function is \"(0,.

The function does not have the \"x\"-intercept.

\"y\" - intercepts is \"1\".

The line \"y=L.\" is the horizontal asymptote of the curve \"y=f(x)\".

if either \"\\lim_{x or \"\\lim_{x.

\"\\lim_{x

\"\\\\\\lim_{x

\"\\\\=\\left

\"=0\".

\"y=0\" is the horizontal asymptote of the function.

Observe the above graph the function does not have vertical asymptote.

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function is continuous for all real numbers.

Decreasing over the interval : \"\\left.

\"\"

\"\"

Observe the above graph :

Domain of the function is all real numbers.

Range of the function is \"(0,.

\"y\" - intercepts is \"1\".

The horizontal asymptote of the function is \"y=0\".

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function  \"p(x)\" Decreasing over the interval : \"\\left.