\"\"

\

The function is \"g(x)=\\left.

\

Make the table of values to find ordered pairs that satisfy the function.

\

Choose values for \"x\" and find the corresponding values for \"y\"

\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"x\"\"g(x)=\\left\"(x,
\"\"\"\"\"\"
\"-2\"\"\"\"\"
\"-1\"\"g(-1)=\\left\"(-1,
\"0\"\"g(0)=\\left\"(0,
\"1\"\"g(1)=\\left\"(1,
\"2\"\"g(2)=\\left\"(2,
\"3\"\"g(3)=\\left\"(3,
\

\"\"

\

Graph :

\

1. Draw a coordinate plane.

\

2. Plot the coordinate points.

\

3. Then sketch the graph, connecting the points with a smooth curve.

\

\"\"

\

Observe the above graph :

\

Domain of the function is all real numbers.

\

Range of the function is \"(0,.

\

The function does not have the \"x\"-intercept.

\

\"y\" - intercepts is \"1\".

\

The line \"y=L.\" is the horizontal asymptote of the curve \"y=f(x)\".

\

if either \"\\lim_{x or \"\\lim_{x.

\

\"\\lim_{x

\

\"\\\\\\lim_{x

\

\"\\\\=\\left

\

\"=0\".

\

\"y=0\" is the horizontal asymptote of the function.

\

Observe the above graph the function does not have vertical asymptote.

\

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

\

The function is continuous for all real numbers.

\

Decreasing over the interval : \"\\left.

\

\"\"

\

\"\"

\

Domain of the function is all real numbers.

\

Range of the function is \"(0,.

\

\"y\" - intercepts is \"1\".

\

The horizontal asymptote of the function is \"y=0\".

\

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

\

The function  \"g(x)\" Decreasing over the interval : \"\\left.