\"\"

\

(a)

\

The graph of the polynomial function is \"\" eventually rises or falls depends on the leading coefficient \"\" and the degree of the polynomial function.

\

When \"\" is odd and \"\" is positive : Graph falls to the left and rises to the right.

\

The function is \"\".

\

Here the degree of the function is \"\" which is odd number, and the leading coefficient is \"\",which is positive.

\

The graph of the function \"\" is falls to the left and rises to the right.

\

\"\"

\

(b)

\

The function is \"\".

\

Find the zeros and state the multiplicity of any repeated zeros.

\

\"\"

\

\"\"

\

The function has zeros at \"\", \"\" and \"\".

\

\"\"

\

(c)

\

Construct a table values of \"\" are in its domain of the function.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
 \"\"\"\"\"\"
\"\"\"\"\"\"
\

\"\"

\

(d)

\

Construct a table of values to find ordered pairs that satisfy the function.

\

Choose values for \"\" and find the corresponding values for \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
 \"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\

Graph :

\

Graph the function \"\" :

\

1. Draw a coordinate plane.

\

2. Plot the coordinate points.

\

3. Sketch the graph, connect the points to a smooth curve.

\

\"\"

\

\"\"

\

(a) 

\

The graph of the function \"\" is falls to the left and rises to the right.

\

(b)

\

The function has zeros at \"\", \"\" and \"\".

\

(c)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
\"\"\"\"\"\"
 \"\"\"\"\"\"
\"\"\"\"\"\"
\

(d)

\

Graph of the function \"\" is

\

\"\"