\"\"

\

The graph shown below goes through points at \"\" and \"\".

\

The equation of the graph is of the form \"\"

\

Substitute the points in \"\".

\

At  point \"\".

\

\"\"

\

\"\".

\

At  point \"\".

\

\"\"

\

\"\".

\

At  point \"\".

\

\"\"

\

\"\".

\

At  point \"\".

\

\"\"

\

\"\"

\

The system of equations are

\

\ \ \"\"

\

Write the equations into matrix form \"\",

\

Where \"\" is coefficient matrix, \"\" is variable matrix and \"\" is constant matrix. \ \ \"\"

\

Definition of inverse matrix :

\

If \"\" is an \"\" then \"\", where \"\"

\

Let \"\", then

\

\"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\", then \"\" has an inverse.

\

\"\"

\

\"\"

\

Where

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Cofactor of  \"\" is

\

\"\"

\

\"\"

\

Cofactor of \"\"

\

\"\"

\

\"\"

\

\"\".

\

Find \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

The inverse of the \"\" is  

\

\"\"

\

\"\"

\

Multiply \"\" by \"\" to solve the system.

\

\"\" is

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

\"\", \"\" and \"\".

\

Caluculate the determinant of matrix \"\".

\

\"\"

\

Because of the determinant of \"\" is zero so,There is no unique solution.The system may have no solution.

\

\"\"

\

No unique solution.