\"\"

\

The rational expression is \"\".

\

The degree of the numerator is greater than that of the denominator, hence divide the numerator by denominator.

\

\"\"

\

The expression can be written as \"\".

\

Rewrite the expression into partial fraction

\

\"\"

\

Find the values of \"\", \"\" and \"\".

\

Multiple each side by the denominator fraction.

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

\"\".

\

Equate the coefficient of \"\", \"\" and constants.

\

\"\", \"\", \"\"

\

\"\", \"\", \"\"

\

Substitute \"\"in  \"\".

\

\"\"

\

\"\"

\

Substitute \"\"and\"\"in  \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\"in  \"\" and  \"\".

\

\"\"

\

\"\"

\

\"\", \"\" and \"\".

\

Substistute the \"\" , \"\" and \"\" values in equation \"\".

\

\"\"

\

The partial decomposed function is\"\".

\

\"\"

\

The partial decomposed function is\"\".

\

Apply infinite limits on each side.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

The partial decomposed function is \"\".

\

\"\".