\"\"

\

The equation of the parabola is \"\".

\

\"\".

\

The general form of ellipse is \"\".

\

Comapre the equation with \"\" .

\

 Here, \"\" and \"\".

\

The parametric representation of the general ellipse is \"\" and \"\" , \"\"

\

Susbtitute \"\" and \"\".

\

\"\" and \"\".

\

\"\"

\

Arc length :

\

The arc length of the curve for the parametric equations \"\" and \"\" in the interval \"\" is \"\".

\

Consider \"\" 

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

Consider  \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\".

\

Susbtittute \"\" and \"\" and \"\" in the function \"\".

\

\"\"

\

\"\"

\

Substittute \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

The Simpsons Rule for approximating \"\"  is given by

\

\"\",

\

where \"\" and  \"\".

\

Fidn the \"\" for \"\".

\

Since we are integrating the half part of the integral, hence the value of \"\".

\

Susbttitute \"\" and \"\" .

\

\"\"

\

Susbtitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

Substitute  \"\" in \"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\"

\

Substittue all the values in \"\".

\

\"\"

\

\"\"

\

The length of the circumference of the ellipse is \"\".

\

\"\"

\

The length of the circumference of the ellipse is \"\".