\"\"

The function is \"f\\left.

Make the table of values to find ordered pairs that satisfy the function.

Choose values for \"x\" and find the corresponding values for \"y\"

\"x\" \"y=\\sqrt[3]{\\left \"\\left
\"-6\" \"y=\\sqrt[3]{\\left \"\\left
\"-4\" \"y=\\sqrt[3]{\\left \"\\left
\"-2\" \"y=\\sqrt[3]{\\left \"\\left
\"0\" \"y=\\sqrt[3]{\\left \"\\left
\"2\" \"y=\\sqrt[3]{\\left \"\\left
\"4\" \"y=\\sqrt[3]{\\left \"\\left
\"6\" \"y=\\sqrt[3]{\\left \"\\left

\"\"

Graph :

1. Draw a coordinate plane.

2. Plot the coordinate points.

3. Then sketch the graph, connecting the points with a smooth curve.

\"\"

Observe the above graph :

Domain of the function is \"\\left(-\\infty,.

Range of the function is \"(.

No \"x\" - intercept.

\"y\" - intercept : \"\\left.

End behavior  : \"lim_{x\\rightarrow and \"lim_{x\\rightarrow.

The function is continuous on the interval \"\\left(-\\infty,.

Increasing on the interval : \"\\left.

Decreasing on the interval : \"\\left.

\"\"

The graph of the function \"f\\left is :

\"\"

Domain of the function is \"\\left(-\\infty,.

Range of the function is \"(.

No \"x\" - intercept.

\"y\" - intercept : \"\\left.

End behavior  : \"lim_{x\\rightarrow and \"lim_{x\\rightarrow.

The function is continuous on the interval \"\\left(-\\infty,.

Increasing on the interval : \"\\left.

Decreasing on the interval : \"\\left.