\"\"

\

The equation of the curve is \"\" and the point is \"\".

\

The slope of tangent is the derivative of the curve at the given point.

\

\"\"

\

Differentiate with respect to \"\" on each side.

\

\"\"

\

Quotient rule of differentiation: \"\".

\

\"\"

\

Power rule of differentiation: \"\".

\

\"\"

\

Simplify the expression.

\

\"\"

\

\"\"

\

The slope of the tangent line at \"\" is

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Find the tangent line using the point slope form : \"\".

\

Substitute the values \"\" and \"\" in point slope form.

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Let \"\" are slopes of two lines.

\

Two lines are perpendicular if and only if \"\".

\

Normal line is perpendicular to the tangent line.

\

Thus the product of their slopes is \"\".

\

Consider the slope of the tangent line as  \"\" and slope of the normal line as \"\".

\

Therefore , \"\".

\

Slope of the normal line is \"\".

\

Point - Slope form: \"\".

\

Substitute the values \"\" and \"\" in point slope form.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

The tangent line equation is \"\".

\

The normal line equation is \"\".