\"\"

\

(a)

\

The equation of parabola is  \"\" and the point is \"\".

\

Slope of the tangent is derivative of the curve.

\

\"\".

\

Apply derivative on each side with respect to \"image\".

\

\"\"

\

Slope of the tangent  is \"\".

\

\"\"

\

Point-slope form of line equation : \"\".

\

Substitute \"\" and \"\" in the above formula.

\

\"\"

\

This is a pair of tangent lines.

\

These tangent lines intersect the parabola, and the intersecting points can be determined  by solving them.

\

Substitute \"\" in the curve \"\".

\

\"\"

\

\"\" and \"\".

\

Substitute \"\" values in \"\".

\

If \"\", then \"\".

\

If \"\", then \"\".

\

Therefore, the points at tangent lines intersect parabola are \"\" and \"\".

\

\"\"

\

Tangent line passing through \"\":

\

\"\".

\

Find the slope at \"\".

\

\"\".

\

Point-slope form of line equation : \"\".

\

Substitute \"\" and \"\" in the above formula.

\

\"\"

\

Tangent line  passing through \"\":

\

\"\".

\

Find the slope at \"\".

\

\"\".

\

Point-slope form of line equation : \"\".

\

Substitute \"\" and \"\" in the above formula.

\

\"\"

\

\"\"

\

(b)

\

The equation of parabola is \"\" and the point is \"\".

\

Slope of the tangent to parabola is \"\".

\

At \"\" , \"\".

\

Assume that at \"\" is the tangent point.

\

Slope of the tangent line at \"\" is \"\".

\

Slope of the line passing through two points \"\" and \"\" is defined as \"\".

\

Here \"\" and \"\"

\

\"\"

\

Discriminant of quadratic equation \"\" is \"\".

\

Here \"\" and \"\".

\

\"\"

\

Since the discriminant is negative there is no real values of \"\".

\

Therefore there is no tangent line at \"\".

\

Graph:

\

Graph the curve with the point \"\".

\

\"\"

\

\"\"

\

Tangents are \"\" and \"\".

\

Graph is

\

\"\".