\

Assume the center of the circle \"\" as \"\".

\

The equation of the circle with radius \"\" is \"\".

\

Consider the point on the circle \"\".

\

So the \"\" satisfy the equation of the circle.

\

\"\".

\

\"\"

\

The coordinates of the \"\".

\

Slope of the line joining two points \"\" and \"\" is given by \"\".

\

Slope of the line joining the points \"\" and \"\":

\

\"\".

\

Slope of the radius \"\" is \"\".

\

\

Equation of the circle is \"\".

\

Slope of the tangent is derivative of the function at a particular point.

\

Find the derivative of the circle equation.

\

Consider \"\".

\

Differentiate on each side with respect to \"\"

\

\"\"

\

Slope of the tangent line at \"\" is \"\".

\

Slope of the tangent is \"\".

\

\

If the two lines with slopes \"\" and \"\" are perpendicular to each other , then \"\".

\

Consider slope of the radius \"\" as \"\" and Slope of the tangent as \"\".

\

Determine the product of the slopes of \"\" line and tangent line at \"\".

\

\"\".

\

Hence it is said to be that slope of the tangent at \"\" is perpendicular to the radius \"\".

\

\

Slope of the tangent at \"\" is perpendicular to the radius \"\".