\"\"

\

The relationship between \"\" and \"\" is given by the law of laminar flow is \"\".

\

Where \"\" is a viscosity of blood and \"\" is pressure difference between ends of tube.

\

Here \"\" and \"\" are constants.

\

(a)

\

Velocity is \"\".

\

Here \"\" dynes/cm2 \"\", \"\" cm, and \"\" cm.

\

Substitute above values in \"\".

\

\"\".

\

When \"\" cm :

\

\"\"

\

\"\".

\

When \"\" cm :

\

\"\"

\

\"\".

\

When \"\" cm :

\

\"\"

\

\"\".

\

\"\"

\

(b)

\

Velocity gradient is instantaneous rate of change velocity with respect to \"\" .

\

Velocity gradient \"\".

\

\"\"

\

Differentiate on each side with respect to \"\".

\

\"\"

\

Velocity gradient \"\".

\

Find Velocity gradient when \"\" :

\

Substitute \"\" ,\"\" , \"\" and \"\" in \"\".

\

\"\"

\

\"\".

\

Find Velocity gradient when \"\" :

\

Substitute \"\" ,\"\" , \"\" and \"\" in \"\".

\

\"\"

\

\"\".

\

Find Velocity gradient when \"\" :

\

Substitute corresponding values  in \"\".

\

\"\"

\

\"\".

\

\"\"

\

(c)

\

From the part (a) it is observed that velocity is greatest at \"\" , which means at the center and velocity gradient is greatest at \"\".

\

\"\"

\

(a) \"\" , \"\" and \"\".

\

(b) \"\", \"\"

\

and \"\".

\

(c) Velocity is greatest at \"\" , which means at the center and velocity gradient is greatest at \"\".