(a)

Observe the graph.

At \"x=1\", the function is \"3\" units above \"x-\" axis.

Therefore the point \"(1, lies on the graph \"f(x)\".

Hence, \"f(1)=3\".

\"\"

(b)

Observe the graph.

At \"x=-1\",the function is located \"0.2\" units below \"x-\" axis.

Therefore the point \"(-1, lies on the graph \"f(x)\".

Hence, \"f(-1)=-0.2\".

\"\"

(c)

Find the value of \"x\" where the graph \"f(x)=1\".

Observe the graph.

\"f(x)=1\" at \"x=0\" and \"x=3\".

Hence, \"f(0)=1\" and \"f(3)=1\".

\"\"

(d)

Find the value of \"x\" where the graph \"f(x)=0\".

Observe the graph.

\"f(x)=0\" at \"x=-0.8\".

Hence, \"f(-0.8)=0\".

\"\"

(e)

The domain of \"f\" consists of all values of \"x\" on the graph of \"f\".

\"f(x)\" is defined for \"-2\\leq.

The domain of \"f\" is \"\\left.

The range of \"f\" consists of all values of \"y\" on the graph of \"f\".

\"f\" takes all the value from \"-1\" to \"3\".

The range of \"f\" is \"\\left.

\"\"

(f)

Observe the graph.

\"f(x)\" increases for all the values of \"x\" between \"-2\\leq

\"f(x)\" increases on the interval \"\\left.

(a) \"f(1)=3\".

(b) \"f(-1)=-0.2\".

(c) \"x=0\" and \"x=3\".

(d) \"f(x)=0\" at \"x=-0.8\".

(e) Domain of \"f\" is \"\\left and range of \"f\" is \"\\left.

(f) \"\\left.