\"\"

\

(a)

\

The existence of an absolute maximum value and an absolute minimum value for \"\" is determined by the Extreme value theorem.

\

Extreme value theorem :

\

If \"\" is continuous on a closed interval \"\", then \"\" has an absolute maximum value \"\" and an absolute minimum value \"\" at \"\" and \"\" in \"\" such that \"\".

\

\"\"

\

(b)

\

Closed interval method of finding absolute extreme values :

\

To find the absolute maximum and minimum values of a continuous function \"\" on a closed interval \"\", perform the following steps.

\

1. Find the values of \"\" at the critical numbers of \"\" in \"\".

\

2. Find the values of \"\" at the endpoints of the interval.

\

3. The largest of the values from steps \"\" and \"\" is the absolute maximum value and the smallest of these values is the absolute minimum value.

\

\"\"

\

(a) Extreme value theorem.

\

(b) Closed interval method is used for finding absolute extreme values.