\"\"

\

Definition of Local Extrema :

\

Functions can have "hills and valleys"  places where they reach a minimum or maximum value.

\

Definition of Absolute Extrema :

\

The minimum and maximum of a function on an interval are also called the absolute minimum and absolute maximum.

\

\

\"\" is neither minimum nor maximum, because moving to right \"\" decreases.

\

\"\" is local minimum, because moving from left to right or vice versa, \"\" increases in both the cases.

\

\"\" is local maxima, because if we moving from left to right or vice versa\"\" decreases in both cases.

\

\"\" is neither minimum nor maximum, because moving to left \"\" increases and moving to right \"\" decreases.

\

\"\" is the absolute minimum because it has the smallest value in the entire domain.

\

\"\" is the absolute maximum, because it has the highest value in the entire domain.

\

\

Absolute maximum at \"\".

\

Absolute minimum at \"\".

\

Local maximum at \"\".

\

Local maximum at \"\" and \"\".

\

Neither maximum nor minimum at \"\" and \"\".