\"\"

\

Definition of local extrema :

\

Functions can have "hills and valleys"  places where they reach a minimum or maximum value.

\

Definition of absolute extrema :

\

The maximum or minimum over the entire function is called an "Absolute" or "Global" maximum or minimum.

\

There is only one global maximum (and one global minimum) but there can be more than one local maximum or minimum.

\

\"\"

\

Observe the graph.

\

\"\" is absolute minimum, but \"\" is not a local minima, because it is an end point.

\

\"\" is local maximum, because moving from left to right or vice versa, \"\" increases.

\

\"\" is none, because moving to left \"\" increases and moving to right \"\" decreases.

\

Since \"\" on its domain \"\", \"\" is absolute maximum.

\

\"\" is local minimum, because moving from left to right, \"\" increases.

\

\"\" is none, because moving to left \"\" decreases.

\

\

Absolute maximum at \"\".

\

Absolute minimum at \"\".

\

Local maximum at \"\".

\

Local Minimum \"\".

\

Neither maximum nor minimum at \"\" and \"\".