\

The function \"\"\"\".

\

Maximum value of a function exist either at the end points or at the critical points.

\

First evaluate the function at the end points.

\

Substitute \"\" in \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\

Find the critical points.

\

\"\" is differentiable at all points because its a polynomial.

\

Therefore \"\" are the only critical points.

\

Differentiate \"\" on each sides with respect to \"\".

\

\"\"

\

To find out critical points equate \"\" to zero.

\

\"\"

\

\"\" and \"\" and \"\".

\

\"\" and \"\" and \"\".

\

\"\" and \"\" and \"\".

\

\"\" and \"\" and \"\".

\

Therefore the critical points are \"\", \"\" and \"\".

\

\

Find the absolute maximum value. 

\

Substitute \"\" in \"\".

\

\"\"

\

\"\".

\

Since \"\" and \"\" are positive numbers, \"\".

\

Absolute maximum is \"\".

\

\

Absolute maximum is \"\".