The perimeter of the rectangle is \"P=20\" m.

Perimeter of a rectangle is \"P=2(L+B)\",

where \"L\" is the length of the rectangle.

          \"B\" is the breadth of the rectangle.

Find \"B\" in terms of \"L\".

\"20=2(L+B)\"

\"10=L+B\"

\"L+B=10\"

\"B=10-L\"

Find the area of the rectangle in terms of \"L\".

Area of the rectangle is \"A=L\\times

Substitute \"B=10-L\" in the area of the rectangle.

\"A(L)=L\\times

\"A(L)=10L-L^2\".

Domain :

The area of the function is \"A(L)=10L-L^2\".

All possible values of \"L\" is the domain of the function.

Area of the rectangle should be a greater than zero.

\"10L-L^2>0\"

\"L(10-L)>0\"

\"L>0\" and \"10-L>0\\Rightarrow.

The domain of the function is \"0<.

Area of the rectangle in terms of length \"L\" is \"A(L)=10L-L^2\".

The domain of \"A(L)=10L-L^2\" is \"0<.