\"\"

The dimensions of the cardboard \"12\" in. by \"20\" in.

Observe the figure:

The height of the box is \"x\" in.

Width of the box = width of the cardboard \"-2x=12-2x\".

Length of the box = length of the cardboard \"-2x=20-2x\".

\"\"

Volume of the box = Length x Width x Height.

Volume of the box \"=(20-2x)(12-2x)(x)\"

\"=(240-40x-24x+4x^2)(x)\"

\"=x(240-64x+4x^2)\"

\"=240x-64x^2+4x^3\"

\"=4x^3-64x^2+240x\"

The volume of the box as a function of \"x\" is \"4x^3-64x^2+240x\".

\"\"

Domain :

All possible values of \"x\" is the domain of the function.

Volume of the box should be greater than zero.

So \"L>0\", \"W>0\" and \"H>0\".

\"20-2x>0\", \"12-2x>0\" and \"x>0\".

\"x<10\", \"x<6\" and \"x>0\".

The domain of the function is \"0<x<6\".

\"\"

The volume of the box as a function of \"x\" is \"4x^3-64x^2+240x\"\"0<x<6\".