\

(a)

\

Thu function is \"\".

\

Differentiate \"\" on each side with respect to \"\".

\

\"\"

\

Find the critical points.

\

Since \"\" is a polynomial it is continuous at all the point.

\

Thus, the critical points exist when \"\".

\

Equate \"\" to zero:

\

\"\"

\

\"\" and \"\"

\

\"\" and \"\".

\

The critical points are \"\" and \"\".

\

The test intervals are \"\", \"\" and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IntervalTest ValueSign of \"\"Conclusion
\"\"\"\" \

\"\"

\
Decreasing
\"\"\"\" \

\"\"

\
Increasing
\"\"\"\" \

\"\"

\
Decreasing
\

The function is increasing on the interval \"\".

\

The function is decreasing on the intervals \"\" and \"\".

\

\

(b)

\

Find the local maximum and local minimum.

\

The function \"\" has a local minimum at \"\", because \"\" changes its sign from negative to positive.

\

Substitute \"\" in \"\".

\

\"\"

\

Local minimum is \"\".

\

The function \"\" has a local maximum at \"\", because \"\" changes its sign from positive to negative.

\

\"\"

\

Local maximum is \"\".

\

\

(c) 

\

\"\".

\

Differentiate \"\" on each side with respect to \"\".

\

\"\"

\

Find the inflection points.

\

Equate \"\" to zero.

\

\"\"

\

The inflection point is at \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

The test intervals are \"\" and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

Interval

\
Test ValueSign of \"\"Concavity
\"\"\"\"\"\"Concave Up
\"\"\"\"\"\" \

Concave Down

\
\

The graph is concave up on the interval \"\".

\

The graph is concave down on the interval \"\".

\

The inflection point is \"\".

\

\

(d)

\

Graph :

\

Graph the function \"\" :

\

\"\"

\

\

(a)

\

Increasing on the intervals \"\".

\

Decreasing on the intervals \"\" and \"\".

\

(b)

\

Local maximum is \"\".

\

Local minimum is \"\".

\

(c)

\

Concave up in the interval \"\".

\

Concave down in the interval \"\".

\

Inflection point is \"\".

\

(d)

\

Graph of the function \"\" is

\

\"\".