The function is \"f(x)=\\frac{x^2}{x^4+1}\".

If \"f(-x)=f(x)\", then the function is said to be even.

If \"f(-x)=-f(x)\", then the function is said to be odd.

Substitute \"x=-x\" in \"f(x)=\\frac{x^2}{x^4+1}\".

\"f(-x)=\\frac{(-x)^2}{(-x)^4+1}\"

\"f(-x)=\\frac{x^2}{x^4+1}\"

\"f(-x)=f(x)\"

Since \"f(-x)=f(x)\", the function \"f(x)=\\frac{x^2}{x^4+1}\" is an even function.

Graph :

Graph the function \"f(x)=\\frac{x^2}{x^4+1}\".

\"\"

Observe the above graph :

It is symmetry with respect to the \"y-\" axis.

So the function is an even function.

The function \"f(x)=\\frac{x^2}{x^4+1}\" is an even function.