The function is \"f(x)=1+3x^2-x^4\".

If \"f(-x)=f(x)\", then the function is said to be even.

If \"f(-x)=-f(x)\", then the function is said to be odd.

Substitute \"x=-x\" in \"f(x)=1+3x^2-x^4\".

\"f(-x)=1+3(-x)^2-(-x)^4\"

\"f(-x)=1+3x^2-x^4\"

\"f(-x)=f(x)\"

Since \"f(-x)=f(x)\", the function \"f(x)=1+3x^2-x^4\" is an even function.

Graph :

Graph the function \"f(x)=1+3x^2-x^4\".

\"\"

Observe the above graph, it is symmetry with respect to \"y-\" axis.

So the function is an even function.

The function \"f(x)=1+3x^2-x^4\" is an even function.