\

The function is \"\".

\

Find the horizontal asymptote.

\

\"\"

\

Therefore the horizontal asymptote is at \"\".

\

To find the vertical asymptote, equate denominator of the function to zero.

\

So \"\"

\

\"\"

\

Here the roots of the function is imaginary, so there is no vertical asymptote.

\

\

The function is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

Find the critical points.

\

Thus, the critical points exist when \"\".

\

\"\"

\

The critical point is \"\".

\

The test intervals are \"\" and \"\".

\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
IntervalTest ValueSign of \"\"Conclusion
\"\"\"\" \

\"\"

\
Decreasing
\"\"\"\" \

\"\"

\
Increasing
\

The function is increasing on the interval \"\".

\

The function is decreasing on the interval \"\".

\

Find the local maximum and local minimum.

\

The function \"\" has a local minimum at \"\", because \"\" changes its sign from negative to positive.

\

Substitute \"\" in \"\".

\

\"\"

\

Local minimum is \"\".

\

\

\"\".

\

Again apply derivative on each side with respect to \"\".

\

\"\"

\

Find the inflection points.

\

Equate \"\" to zero.

\

\"\"

\

The inflection point is at \"\" and \"\".

\

\"\"

\

\"\"

\

The test intervals are \"\", \"\" and \"\". 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

Interval

\
Test ValueSign of \"\"Concavity
\"\"\"\"\"\"Down
\"\"\"\"\"\" \

Up

\
\"\"\"\"\"\"Down
\

The graph is concave up on the interval \"\".

\

The graph is concave down on the intervals \"\" and \"\".

\

The inflection points are \"\" and \"\".

\

\

Graph :

\

Graph the function \"\" :

\

\"\"

\

\

The horizontal asymptote is at \"\".

\

The function is increasing on \"\" and decreasing on \"\".

\

The graph is concave up on \"\" and concave down on \"\" and \"\".

\

Graph of the function \"\" is

\

\"\".