\

The function is \"\".

\

(A)

\

Domain :

\

The function is \"\".

\

All possible values of \"\" is the domain of the function.

\

Denominator of the function should not be zero

\

\"\"

\

\"\" and \"\".

\

The domain of the function \"\" is \"\".

\

\

(B)

\

Intercepts :

\

To find the \"\"-intercepts, substitute \"\" in the function.

\

\"\"

\

Therefore the \"\"-intercept is \"\".

\

To find the \"\"-intercepts, substitute \"\" in the function.

\

\"\"

\

Since at \"\", the functionis not defined \"\".

\

Therefore the \"\"-intercepts is \"\".

\

\

(C)

\

Symmetry :

\

Substitute \"\" in the function.

\

\"\"

\

Here \"\"

\

Therefore the function \"\" is neither odd nor even.

\

\

(D)

\

Asymptotes :

\

Horizontal asymptote :

\

\"\"

\

Therefore the horizontal asymptote is \"\".

\

Vertical asymptote :

\

Vertical asymptote appears when the function is not defined.

\

\"\"

\

Since at \"\", the functionis not defined. 

\

\"\"

\

Therefore the vertical asymptote is \"\".

\

\

(E)

\

Intervals of increase or decrease : 

\

The function is \"\".

\

Differentiate \"\" on each side with respect to \"\".

\

\"\"

\

\"\" is never zero and the function is positive for the domain of \"\".

\

Therefore \"\" is increasing over its domain.

\

\

(F)

\

Local Maximum and Minimum values :

\

From (E) it is clear that the function is only increasing.

\

Therefore is no local minimum or maximum values.

\

\

(G)

\

Concavity and point of inflection :

\

\"\".

\

Differentiate \"\" on each side with respect to \"\".

\

\"\"

\

Find inflection point.

\

\"\" is never zero.

\

There is no inflection point.

\

But at \"\" and \"\", the function is undefined, so split the intervals into \"\", \"\"  and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

Interval

\
Test ValueSign of \"\"Concavity
\"\"\"\" \

\"\"

\

 

\
Up
\"\"\"\" \

\"\"

\
\

 

\

Up

\
\"\"\"\" \

\"\"

\

 

\
Down
\

The graph is concave up in the interval \"\", \"\".

\

The graph is concave down in the interval \"\".

\

\

(H)

\

Graph :

\

Graph of the function  \"\":

\

\"\"

\

\

(A) The domain of the function \"\" is \"\".

\

(B) \"\"-intercept is \"\" and \"\"-intercepts are \"\".

\

(C) No symmetry.

\

(D) The horizontal asymptote is \"\" and the vertical asymptote is \"\".

\

(E) Increasing on  \"\", \"\"and \"\".

\

(F) There is neither local minimum nor local maximum.

\

(G) Concave up on \"\" and \"\".

\

      concave down on \"\".

\

(H) Graph of the function  \"\" is

\

\"\".