\

The integral is \"\".

\

Here integrand function is \"\" and the interval is \"\".

\

Find the absolute minimum and maximum values in the interval \"\".

\

\"\".

\

Differentiate on each side with respect to \"\".

\

\"\".

\

Find the critical number by equating \"\" to zero.

\

\"\"

\

Hence there is only one number in the interval \"\".

\

Find the value of the function at the critical number \"\".

\

\"\"

\

Find the value of the function at the end points at \"\".

\

\"\"

\

\"\"

\

Therefore, absolute minimum in the \"\" is \"\".

\

Absolute maximum in the \"\" is \"\".

\

\"\".

\

Comparison property of integrals:

\

If \"\" for \"\", then \"\".

\

Here \"\" and \"\".

\

Hence by the comparison property of integrals,  

\

\"\"

\

\

\"\".