\

The integral is \"\".

\

The function is \"\" and the interval is \"\".

\

Find the absolute minimum and maximum values in the interval \"\".

\

\"\".

\

Differentiate on each side with respect to \"\".

\

\"\"

\

\"\".

\

Find the critical number by equating \"\" to zero.

\

\"\"

\

General solution of cosine function is \"\".

\

\"\"

\

For \"\" then

\

\"\"

\

\"\" is not in the interval \"\", hence it is not considered.

\

\"\".

\

Find the value of the function at the critical number \"\".

\

\"\"

\

\

Find the value of the function at the end points at \"\".

\

Substitute \"\" in the function.

\

\"\"

\

Substitute \"\" in the function.

\

\"\"

\

Therefore, absolute minimum of the function in the \"\" is \"\".

\

Absolute minimum of the function in the \"\" is \"\".

\

\"\".

\

Comparison property of integrals:

\

If \"\" for \"\", then \"\".

\

Here \"\" and \"\".

\

By comparison property of integrals :

\

\"\"

\

\

\"\".