\"\"

\

Lynn found, for $\"\" she driven \"\" miles in May and for $\"\" she driven \"\" miles in June.

\

The monthly cost depends on the number of miles she travels.

\

(a)

\

The monthly cost \"\" and distance driven \"\" are linearly related.

\

Find the monthly cost \"\" as the function of distance driven \"\".

\

Here \"\" is the input variable and \"\" is the output.

\

From the data the two points are \"\" and \"\".

\

The line equation passing through the points\"\" and \"\" is \"\".

\

Substitute \"\" and \"\" in the line equation.

\

\"\"

\

The linear equation is \"\".

\

\"\"

\

(b)

\

Find the cost if she driven a \"\" miles per month.

\

The distance driven is \"\" mi.

\

The linear equation is \"\".

\

Substitute \"\" in the linear equation.

\

\"\"

\

Lynn driven a \"\" miles per month it cost  $\"\".

\

\"\"

\

(c)

\

Graph :

\

(1) Draw the coordinate plane.

\

(2) Draw the linear equation \"\".

\

\"\"axis : Distance driven as \"\".

\

\"\"axis : Monthly cost \"\".

\

\"\"

\

From the graph, slope is \"\"

\

The slope represents that \"\" miles cost is $\"\".

\

\"\"

\

(d)

\

The linear equation is \"\".

\

\"\"intercept represents the fixed cost of the cost function.

\

Here \"\"intercept is \"\" and it represents that Lynn pays $\"\" in a month before she drives the car.

\

\"\"

\

(e)

\

The change of cost per mile increases linearly at a constant rate.

\

\"\"

\

(a) The linear equation is \"\".

\

(b) Lynn driven a \"\" miles per month it cost  $\"\".

\

(c) Graph of the linear equation \"\" is

\

\"\"

\

The slope represents that \"\" miles cost is $\"\".

\

(d) \"\"intercept represents the fixed cost of the cost function.

\

(e)The change of cost per mile increases linearly at a constant rate.