\"\"

\

The curve is  \"\", the line is \"\" and the region is rotated about \"\".

\

Rewrite the curve  \"\" as \"\".

\

(a) Method of Cylinders :

\

The volume of the solid obtained by rotating about \"\"-axis, the region of the curve \"\" from \"\" to \"\" is

\

\"\".

\

Find the point of intersections.

\

Find the values of \"\" for \"\" and \"\".

\

\"\"

\

\"\" and \"\".

\

Integral limits are \"\" and \"\".

\

Here rotation is about the line \"\".

\

Hence the radius is \"\".

\

Height is \"\".

\

Set up the integral for the volume using above volume formula.

\

Find the volume of the solid obtained by rotating region about \"\", bounded by the curve \"\" and \"\" from \"\" to \"\" is  \"\".

\

\"\".

\

\"\"

\

(b)

\

Use calculator to find \"\".

\

Therefore the result is \"\".

\

\"\"

\

(a) \"\".

\

(b) \"\".