\"\"

\

Velocity \"\" of the blood that flows in a vessel with radius \"\" and length \"\" at a distance \"\" fom the central axis is  \"\".

\

Where, \"\" is pressure difference between the ends of the vessel and \"\" is the viscocity of the blood.

\

Find the average velocity over the interval \"\".

\

Average value of the function \"\" on \"\" is defined as \"\".

\

Here \"\".

\

Average velocity of \"\" is \"\".\"\"

\

\"\" 

\

\"\".

\

Average value of the velocity is \"\".

\

\"\"

\

Consider \"\".

\

Differntiate on each side with respect to \"\".

\

\"\"

\

Determine the maximum velocity by equating \"\" to zero.

\

\"\"

\

\"\".

\

Velocity reached its maximum, when \"\".

\

Therefore, maximum velocity is 

\

\"\"

\

Compare the average velocity with maximum velocity.

\

\"\" and \"\".

\

\"\"

\

Hence the average velocity is \"\" of the maximum velocity.\"\"

\

Average value of the velocity is \"\".

\

Average velocity is \"\" of the maximum velocity.