\"\"

\

(a)

\

The function is \"\" and \"\".

\

A function \"\" is said to be one to one if any two elements in the domain are correspond to two different elements in the range.

\

If \"image\" and \"image\" are two different inputs of a function \"\", then \"\" is said to be one to one provided  \"\".

\

If \"\" then

\

\"\"

\

Therefore, the function \"\"  is said to be one-to-one function.

\

\"\"

\

(b)

\

The function is \"\".

\

Theorem 7:

\

If \"\" is a oneto one differentiable function with inverse function \"\" and \"\" then the inverse function is

\

differentiable at \"\" and \"\".

\

Find \"\".

\

Equate the function to \"\".

\

\"\"

\

Therefore \"\" then \"\".

\

\"\"

\

Differentiate the function with respect to \"\".

\

Power rule of derivatives : \"\".

\

\"\".

\

\"\"

\

\"\".

\

\"\"

\

(c)

\

The function is \"\".

\

Let \"\".

\

To find the inverse of \"\", replace \"\" with \"\" and \"\" with \"\".

\

\"\".

\

Solve for \"\".

\

\"\"

\

\"\".

\

The inverse of the function \"\" is \"\".

\

The domain of a function is all values of \"\", those makes the function mathematically correct.

\

Since the inverse function is a polynomial then its domain is all real numbers.

\

Domain of \"\" is \"\".

\

Range set is the corresponding values of the function for different values of x.

\

The range of the function is always greater than or equal to two.

\

Range of \"\" is : \"\".

\

\"\"

\

(d)

\

Consider \"\".

\

Differentiate the function with respect to \"\".

\

\"\"

\

\"\"

\

Substitute \"\" in above expression.

\

\"\".

\

\"\"

\

(e)

\

The graph of \"\" and \"\" is

\

 \"\"

\

\"\"

\

(a) The function \"\"  is said to be one-to-one function.

\

(b) \"\".

\

(c)

\

The inverse function is \"\",

\

Domain of \"\" is \"\" and 

\

Range of \"\" is : \"\".

\

(d) \"\".

\

(e) The graph is

\

\"\".