\"\"

\

(a)

\

The function is \"\", \"\" and \"\".

\

A function \"\" is said to be one to one if any two elements in the domain are correspond to two different elements in the range.

\

If \"\" and \"\" are two different inputs of a function \"\", then \"\" is said to be one to one provided  \"\".

\

If \"\" then \"\" for \"\".

\

Multiply on each side by \"\".

\

\"\".

\

Add \"\" to each side.

\

\"\".

\

\"\".

\

Therefore, the function \"\"  is said to be one-to-one function.

\

\"\"

\

(b)

\

The function is \"\".

\

Theorem 7:

\

If \"\" is a oneto one differentiable function with inverse function \"\" and \"\" then the inverse function is differentiable at \"\" and \"\".

\

Find \"\".

\

Equate the function to \"\".

\

\"\"

\

\"\" since \"\" is not in the interval \"\".

\

Therefore \"\" then \"\".

\

\"\".

\

Differentiate the function with respect to \"\".

\

\"\".

\

Power rule of derivatives : \"\".

\

\"\".

\

\"\"

\

\"\".

\

\"\"

\

(c)

\

The function is \"\".

\

Let \"\".

\

To find the inverse of \"\", replace \"\" with \"\" and \"\" with \"\".

\

\"\".

\

Solve for \"\".

\

\"\"

\

The inverse of the function \"\" is \"\".

\

From the inverse function definition,

\

Domain of \"\" is range of \"\" and the range of \"\" is domain of \"\".

\

Domain of \"\" is \"\".

\

Range of \"\" is  \"\".

\

Therefore,

\

Domain of \"\" is \"\".

\

Range of \"\" is  \"\".

\

\"\"

\

(d)

\

The inverse function is \"\".

\

Differentiate on each side with respect to \"\".

\

\"\"

\

Power rule of derivatives : \"\".

\

\"\"

\

Sunbstitute \"\" in above expression.

\

\"\".

\

Sunbstitute \"\" in above expression.

\

\"\".

\

\"\"

\

(e)

\

The graph of \"\" and \"\" is :

\

\"\"

\

\"\"

\

(a) The function \"\"  is one-to-one function.

\

(b) \"\".

\

(c)

\

The inverse function is \"\",

\

Domain of \"\" is \"\".

\

Range of \"\" is  \"\".

\

(d) 

\

\"\".

\

(e)

\

The graph is :

\

\"\".