\"\"

\

(a)

\

Normal density function is \"\".

\

Where \"\" is mean and positive constant \"\" is called standard deviation.

\

Let the function in special case by removing the factor \"\" and considering \"\".

\

Therefore, the function is \"\".

\

Horizontal asymptote :

\

\"\"

\

Therefore \"\" is the horizontal asymptote of the function.

\

Maximum value:

\

Consider \"\".

\

Differentiate on each side with respect to \"\".

\

\"\"

\

Find the critical points by equating the derivatve to zero.

\

\"\"

\

The function has the maximum value at \"\", Since \"\".

\

\"\"

\

Maximum value is \"\".

\

Inflection points:

\

\"\".

\

Differentiate  on each side with respect to \"\".

\

\"\"

\

Find the inflection points by equating \"\" to zero.

\

\"\"

\

Substitute \"\" in the function.

\

\"\"

\

Inflection point is \"\".

\

\"\"

\

(b)

\

The curve equation is \"\".

\

Property : \"\", stretch the graph of  the function \"\" horizontally by a factor of \"\".

\

\"\"stretch the graph of  the function \"\" horizontally by a factor of \"\", for \"\".

\

\"\"

\

(c)

\

Graph :

\

Graph the curve \"\" for \"\".

\

\"\"

\

Observe the graph :

\

\"\"stretch horizontally as \"\" increases.

\

\"\"

\

\"\" is the horizontal asymptote of the function.

\

Maximum value is \"\".

\

Inflection point is \"\".

\

\"\"stretch the graph of  the function \"\" horizontally by a factor of \"\", for \"\".

\

\"\"stretch horizontally as \"\" increases.