\"\"

\

An airplane is flying at a speed of \"\" mi/h.

\

At time \"\", an altitude of \"\" mi/h and passes directly over the radar station.

\

\"\"

\

(a)

\

Find \"\".

\

Observe the figure.

\

At \"\", the distance between the airplane and the radar station is \"\" mi/h.

\

The speed of the airplane is \"\" mi/h.

\

Speed-distance relation:

\

\"\"

\

\"\".

\

\"\".

\

Therefore \"\".

\

The horizontal distance function is \"\".

\

\"\"

\

(b)

\

Find \"\".

\

Observe the figure.

\

At time \"\", \"\" is the distance between the plane and the radar station.

\

At \"\", the distance between the airplane and the radar station is \"\" mi/h.

\

\"\" is the horizontal distance traveled by the airplane.

\

From Pythagorean theorem,

\

\"\"

\

The function of distance traveled by the airplane at time \"\" is 

\

\"\".

\

\"\"

\

(c)

\

Find the composite function \"\" as the function of \"\".

\

Consider the composite function \"\".

\

\"\"

\

              \"\"                                 ( Since \"\" )

\

              \"\"

\

\"\".

\

\"\"

\

(a)The horizontal distance function is \"\".

\

(b) \"\".

\

(c) \"\".