\

(a)

\

\"\".

\

By using calculator, Construct the table of values\"\" for \"\" and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\

Observe the table:

\

The integral is convergent.

\

\

(b)

\

Comparison Theorem:

\

Suppose that \"\" and \"\" are continuous functions with \"\" for \"\".

\

(a) If \"\" is convergent, then  \"\" is convergent.

\

(b) If \"\" is divergent, then \"\" is divergent.

\

The functions \"\" and \"\".

\

For \"\"

\

\"\"

\

The improper integral\"\" is convergent.

\

Hence the Comparison theorem:implies that the improper integral \"\" is convergent.

\

\

(c) Graph the functions \"\" and \"\"on same screen.

\

\"\"

\

Observe the graph: \"\".

\

\"\" is convergent.

\

Since \"\", the area under \"\" is finite too.

\

Therefore, \"\" is convergent.

\

\

(a)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\

(b) \"\"  is convergent.

\

(c) Graph of the functions \"\" and \"\" on same screen.

\

\"\".