\"\"

\

The integral is \"\".

\

\"\"

\

\"\" where \"\" is \"\".

\

So the above in equality is \"\".

\

The function \"\" increasing over the interva \"\".

\

Consider the value of \"\" is \"\".

\

So the value of  \"\" is \"\".

\

\"\".

\

\"\"

\

Comparison theorem :

\

Suppose that \"\" and \"\" are continuous functions with \"\" for \"\",

\

1. If \"\" is convergent, then \"\" is convergent.

\

2. If \"\" is divergent, then \"\" is also divergent.

\

Here \"\" and \"\".

\

\"\"

\

Let \"\" then \"\".

\

\"\"

\

Substitute corresponding values in above equation.

\

\"\"

\

Substitute \"\" in the above equation.

\

\"\"

\

Since \"\" is a finite value, it is convergent.

\

Thus, \"\" is convergent.

\

\"\"

\

\"\" is convergent.