\"\"

\

The average speed of molecules in an ideal gas is \"\".

\

Where \"\" is the molecular weight of the gas, \"\" is the gas constant, \"\" is the gas temperature and \"\" is the molecular speed.

\

\"\"

\

Let \"\".

\

\"\".

\

\"\"

\

Consider \"\".

\

\"\".

\

Solve the integral by using parts of integration method.

\

Formula for integration by parts :\"\".

\

\"\" and \"\".

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

Apply integral on each side.

\

\"\"

\

\"\".

\

Substitute the corresponding values in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

\"\".