The integral expression converges.
Consider .
Let .
Differentiate on each side.
\Substitute corresponding values in the integral.
\If , then
Substitute above values in .
Therefore, .
Consider .
Apply L-Hospital rule to find the limit, since the expression tends to indeterminate form .
Property of limits : .
.
Substitute above result in equation .
If , then above expression tends to
.
If , then expression tends to
.
If , then above expression tends to a finite number
.
If , Integral tends to a finite number
.