\"\"

\

If  \"\" and \"\".

\

The integral expression is  \"\".

\

Consider the fact that \"\" is greater than \"\", since denominator is small in the first expression.

\

Consider \"\".

\

\"\"

\

Since \"\" then \"\" and it is some negative number.

\

Let \"\".

\

\"\"

\

\"\" which results a finite number, therefore \"\" is convergent.

\

From the comparison theorem:

\

Suppose \"\" and \"\" are continuous functions with \"\" and

\

If \"\" is convergent then \"\" is also convergent.

\

Therefore, if \"\" then \"\" is also convergent.

\

\"\"

\

\"\" is convergent.