\"\"

\

The piecewise function is \"\", \"\".

\

Definition of continuity :

\

A function \"\" is continuous at \"\", if \"\" then it should satisfy three conditions :

\

(1) \"\" is defined.

\

(2) \"\" exists.

\

(3) \"\".

\

\"\"

\

The function is \"\".

\

\"\"

\

If \"\", then the function is \"\".

\

\"\".

\

\"\" is defined at \"\".

\

\"\"

\

The function is \"\".

\

Left hand limit :

\

\"\"

\

If \"\" closes to \"\" but smaller than \"\", then the denominator is a small negative number.

\

The function \"\" gets a large negative number.

\

\"\".

\

Right hand limit :

\

\"\"

\

If \"\" closes to \"\" but larger than \"\", then the denominator is a small positive number.

\

The function \"\" gets a large positive number.

\

\"\".

\

Left hand limit and right hand limit are not equal, so limit does not exist.

\

\"\" does not exist.

\

It does not satisfies the condition of continuity, hence the function is discontinuous.

\

Therefore \"\" is discontinuous at \"\".

\

\"\"

\

Graph :

\

Graph the piecewise function \"\" :

\

\"\"

\

Observe the graph.

\

As \"\" approaches to \"\" from left hand side, \"\" tends to \"\".

\

As \"\" approaches to \"\" from right hand side, \"\" tends to \"\".

\

Limit does not exist because the left and right hand limits are not equal.

\

The function \"\" is discontinuous at \"\".

\

\"\"

\

The function \"\" is discontinuous at \"\".