\"\"

\

The piecewise function is \"\", \"\".

\

Definition of continuity :

\

A function \"\" is continuous at \"\", if \"\" then it should satisfy three conditions :

\

(1) \"\" is defined.

\

(2) \"\" exists.

\

(3) \"\".

\

\"\"

\

Condition (1):

\

\"\" is defined.

\

The piecewise function is \"\".

\

\"\"

\

If \"\" then the function is \"\".

\

\"\".

\

\"\" is defined at \"\".\"\"

\

Condition (2):

\

\"\" exists.

\

Left hand limit :

\

\"\"

\

\"\".

\

Right hand limit :

\

\"\"

\

\"\".

\

Left hand limit and right hand limit are equal, limit exist.

\

\"\".

\

\"\"

\

Condition (3):

\

\"\".

\

\"\" and \"\".

\

Here \"\".

\

The third condition of continuity is not satisfied, hence the function is not continuous.

\

The function \"\" is not continuous at \"\".

\

\"\"

\

Graph :

\

Graph the piecewise function \"\" :

\

\"\"

\

Observe the graph.

\

As \"\" approaches to \"\" from left hand side, \"\" tends to \"\".

\

As \"\" approaches to \"\" from right hand side, \"\" tends to \"\".

\

\"\"

\

Limit exist because the left and right hand limits are equal.

\

\"\".

\

But \"\".

\

\"\".

\

The function \"\" is discontinuous at \"\".

\

\"\"

\

The function \"\" is discontinuous at \"\".