\"\"

\

First find the minimum point of the graph.

\

Since absolute value function can not be negative, the minimum point of the

\

graph is where \"\".

\

The original function is \"\".

\

Set original function \"\"

\

\"\"\"\"

\

According to subtraction property of equality: if \"\", then \"\".

\

\"\"            (Subtract 3 from each side)

\

\"\"                        (Additive invrese property: \"\")

\

\"\"                          (Additive identity property: \"\")

\

Write \"\" as \"\".\"\"

\

First solve the case \"\".

\

According to addition property of equality: if a = b, then a + c = b + c.

\

\"\"          (Add 3 to each side)

\

\"\"                      (Additive invrese property: \"\")

\

\"\"                               (Add: \"\")

\

\"\"                          (Divide each side by 2)

\

\"\"                                 (Cancel common terms) \ \ \"\"

\

Next solve the case \"\".

\

According to addition property of equality: if a = b, then a + c = b + c.

\

\"\"          (Add 3 to each side)

\

\"\"                      (Additive invrese property: \"\")

\

\"\"                            (Add: \"\")

\

\"\"                       (Divide each side by 2)

\

\"\"                           (Cancel common terms)

\

\"\"                              (Divide: \"\")\"\"

\

Next make at table, fill out the table with values for \"\".

\ \
\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\

\"\"

\
\

x

\
\

 g(x)

\
\

1

\
     6
\

 0

\
\

4

\
\

 1

\
\

 2

\
      2       2
      3       4
\

\"\"

\

First, draw a co-ordinate plane.

\

Locate the points on co-ordinate plane and draw the graph through these points.

\

\"absolute

\

\"\"

\

\"absolute