Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

808,053 users

Give the exact value of each expression?

0 votes
1. cos165⁰
2. sin 11π/12
3. tan465°
asked Jun 24, 2014 in TRIGONOMETRY by anonymous

3 Answers

0 votes

1) cos165o

= cos(120o + 45o)

= cos(120o) cos(45o) - sin(120o)sin(45o)  [Since cos(A + B) = cosAcosB - sinAsinB]

= cos(120o)(1/√2) - sin(120o)(1/√2)

= 1/√2 [ cos(120o) - sin(120o) ]

= 1/√2 [ cos(90o + 30o) - sin(90o + 30o)]

= 1/√2 [ {cos(90o)cos(30o) - sin(90o)sin(30o)} - sin(90o + 30o)] [Since cos(A + B) = cosAcosB - sinAsinB]

= 1/√2 [ {(0)(√3/2) - (1)(1/2)} - sin(90o + 30o)]

= 1/√2 [ 0 - 1/2 - sin(90o + 30o)]

= 1/√2 [ -1/2 - sin(90o + 30o)]

= 1/√2 [ -1/2 - {sin(90o)cos(30o) + cos(90o)sin(30o)}]   [Since sin(A + B) = sinAcosB + cosAsinB]

= 1/√2 [ -1/2 - {(1)(√3/2) + (0)(1/2)}]

= 1/√2 [ -1/2 - {√3/2 + 0}]

= 1/√2 [ -1/2 - √3/2]

= 1/√2 [ (-1 - √3) / 2]

= -1 - √3 / 2√2

= -(1+√3) / 2√2

Therefore cos165o = -(1+√3) / 2√2.

answered Jun 24, 2014 by joly Scholar
0 votes

2) sin 11π/12

= sin 11(180)/12

= sin (1980)/12

= sin 165o

= sin(120o + 45o)

= sin(120o) cos(45o) + cos(120o)sin(45o)  [Since sin(A + B) = sinAcosB + cosAsinB]

= sin(120o) (1/√2) + cos(120o)(1/√2)

= (1/√2) [ sin(120o) + cos(120o) ]

= (1/√2) [ sin(90o + 30o) + cos(90o + 30o) ]

= (1/√2) [ {sin(90o) cos(30o) + cos(90o)sin(30o)} + cos(90o + 30o) ] [Since sin(A + B) = sinAcosB + cosAsinB]

= (1/√2) [ {(1) (√3/2) + (0)(1/2)} + cos(90o + 30o) ]

= (1/√2) [ {√3/2 + 0} + cos(90o + 30o) ]

= (1/√2) [ √3/2 + cos(90o + 30o) ]

= (1/√2) [ √3/2 + cos(90o) cos(30o) - sin(90o)sin(30o) ] [Since cos(A + B) = cosAcosB - sinAsinB]

= (1/√2) [ √3/2 + (0)(√3/2) - (1)(1/2) ]

= (1/√2) [ √3/2 + 0 - 1/2 ]

= (1/√2) [ √3/2 - 1/2 ]

= (1/√2) [ (√3 - 1)/2 ]

= (√3 - 1) / 2√2

Therefore sin11π/12 = (√3 - 1) / 2√2.

 

answered Jun 24, 2014 by joly Scholar
0 votes

3) tan465o

= tan(360o +105o)

= tan(2π + 105o)

= tan(105o)                                                                         [Since tan(2π + α) = tan α ]

= sin(105o) / cos(105o)

= sin (60o + 45o) / cos(60o + 45o)

= {sin(60o)cos(45o) + cos(60o)sin(45o)} / cos(60o + 45o)    [Since sin(A + B) = sinAcosB + cosAsinB]

= {cos(60o)cos(45o) - sin(60o)sin(45o)} / cos(60o + 45o)    [Since cos(A + B) = cosAcosB - sinAsinB]

= {(√3/2)(1/√2) + (1/2)(1/√2)} / cos(60o + 45o)

= {√3 / 2√2 + 1/2√2} / cos(60o + 45o)

= {(√3 + 1)/2√2} / cos(60o + 45o)

= {(√3 + 1) / 2√2} / {cos(60o)cos(45o) - sin(60o)sin(45o)}    [Since cos(A + B) = cosAcosB - sinAsinB]

= {(√3 + 1) / 2√2} / {(1/2)(1/√2) - (√3/2)(1/√2)}

= {(√3 + 1) / 2√2} / {1 / 2√2 - √3 / 2√2)}

= {(√3 + 1) / 2√2} / {(1 - √3) / 2√2}

= (1 + √3) / (1 - √3)

Multiply numerator and denominator by (√3 + 1).

= (1 + √3)(1 + √3) / (1 - √3)(1 + √3)

= (1 + √3)2 / {(1)2 - (√3)2}

= (1 + 2√3 + 3) / (1 - 3)

= (4 + 2√3) / (- 2)

= 2(2 + √3) / (- 2)

= - 2 - √3.

Therefore tan 465o = - 2 - √3.

 

answered Jun 24, 2014 by casacop Expert

Related questions

...