Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,736 users

Obtain the antiderivatives of tge following indefinite integrals, given the additional conditions.?

0 votes
(a) y=∫x^3 (3x^2-3)dx, where y(1)=-1
(b) y=∫3csc^2 x-5secxtanxdx, where y(pi/4)=1.
asked Oct 24, 2014 in CALCULUS by anonymous

2 Answers

0 votes

(a) 

y(x) = ∫x³ (3x²-3)dx

y(x) = ∫(3x^5 - 3x³dx

y(x) =3 ∫(x^5 - x³) dx

y(x) =3 [ (x^6)/6 - (x^4)/4)  +c]               [ xn =  (xn+1)/n+1 ] 

Given an initial condition y(1) = -1 .

y(1) =3 [ (1^6)/6 - (1^4)/4)  +c] 

-1 = 3 [ 1/6 - 1/4  +c] 

-1 = 3 [ -1/12 +c] 

-1/12 +c = -1/3 

c =  -1/3  +1/12

c = -3/4 .

y(x) =3 [ (x^6)/6 - (x^4)/4)  -3/4 ]

So y(x) =3 [ (x^6)/6 - (x^4)/4)  -3/4 ] .

answered Oct 24, 2014 by friend Mentor
0 votes

(b) 

 y(x) = ∫(3csc² x - 5secx tanx ) dx 

 y(x) = 3∫csc² x dx  - 5 ∫secx tanx dx 

 y(x) = -3cot x  - 5 secx + c                    [  ∫csc² x dx = -cot x  and secx tanx dx = sec x + c ]

Given an initial condition y(π/4) = 1 .

y(π/4) = -3cot π/4  - 5 secπ/4 + c   

1 = -3(1)  - 5√2  + c   

1 = -3  - 5√2  + c  

c = 4 + 5√2 

So  y(x) = -3cot x  - 5 secx + 4 + 5√2 

answered Oct 24, 2014 by friend Mentor

Related questions

asked Nov 11, 2014 in CALCULUS by anonymous
asked Jul 21, 2014 in CALCULUS by anonymous
...