Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,716 users

Fractions simplifying

0 votes

asked Oct 28, 2017 in ALGEBRA 2 by MathGuy Novice

1 Answer

0 votes

The Expression (s + 1)[ (s/(s^2 + 1) - (1/s) ] / [2 + (1/s) + s]

Numerator simplification : 

(s + 1){[ s / (s^2 + 1) ] - (1/s) }    =   (s + 1) {(s^2 - s^2 - 1) / [s(s^2 + 1)]}

                                                   =   [(s + 1)(-1)] / [s(s^2 + 1)]

                                                   =   (-s - 1)/[s(s^2 + 1)]

                                                   =   -(s + 1) / [s(s^2 + 1)]

Denominator simplificatiion :

2 + (1/s) + s   =   (2s + 1 + s^2) / s

                      =   [(s + 1)^2] / s

Therefore,

(s + 1)[(s/(s^2 + 1) - (1/s)] / [2 + (1/s) + s]  =   {-(s + 1) / [s(s^2 + 1)]} / {[(s + 1)^2] / s}

                                                                   =    [-(s + 1)] / [s(s^2 + 1)] * [s / ((s + 1)^2)]
                                                                   =    [-(s + 1)] / [(s^2 + 1)(s + 1)^2]
                                                                   =   -1 / [ (s + 1)(s^2 + 1) ]                               
answered Dec 22, 2017 by homeworkhelp Mentor

Related questions

asked Dec 24, 2016 in ALGEBRA 1 by anonymous
asked Oct 18, 2016 in CALCULUS by anonymous
...