Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,709 users

Find compound functions

0 votes
Given that f(x)= (x-5) ^2 and g(x)=3- 2x,

Find a) (f+g)(x) b) (f-g)(x) c) (fg)(x) d) (f/g)(x)
asked Oct 2, 2018 in ALGEBRA 1 by anonymous
reshown Oct 2, 2018 by bradely

1 Answer

0 votes

Given that f(x) = (x - 5)^2 and g(x) = 3 - 2x

a)

(f+g)(x)  =  (x - 5)^2 + (3 - 2x)

             =  x^2 - 10x + 25 + 3 - 2x

             =  x^2 - 12x + 28

b)

(f-g)(x)  =  (x - 5)^2 - (3 - 2x)

             =  x^2 - 10x + 25 - 3 + 2x

             =  x^2 - 8x + 22

c)

(fg)(x)  =  (x - 5)^2 X (3 - 2x)

           =  (x^2 - 10x + 25) X (3 - 2x)

           =  [ 3(x^2 - 10x + 25) ] - [ (2x)(x^2 - 10x + 25) ]

           =  3x^2 - 30x + 75 - 2x^3 + 20x^2 - 50x

           =  - 2x^3 + 23x^2 - 80x + 75

d)

(f/g)(x)  =  [(x - 5)^2] / (3 - 2x)

            =  (x^2 - 10x + 25/ (3 - 2x)

Answer :

a)   (f+g)(x)  =  x^2 - 12x + 28

b)   (f-g)(x)  =  x^2 - 8x + 22

c)   (fg)(x)  = - 2x^3 + 23x^2 - 80x + 75

d)   (f/g)(x)  =  (x^2 - 10x + 25/ (3 - 2x)
answered Oct 4, 2018 by homeworkhelp Mentor

Related questions

asked Sep 30, 2014 in ALGEBRA 1 by anonymous
...