Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

811,102 users

Partial fraction decomposition

0 votes

asked Dec 16, 2017 in ALGEBRA 2 by MathGuy Novice
reshown Dec 16, 2017 by bradely

1 Answer

0 votes

(s^2 + s + 1) / [(2s + 2) (s^2 + 1)]   =   [ A/(2s + 2) ] + [(Bs + C) / (s^2 + 1)] --------> (T)

Take the LCM

(s^2 + s + 1)   =   [ A(s^2 + 1) ] + [ (Bs + C)(2s + 2) ]

(s^2 + s + 1)   =   As^2 + A + 2Bs^2 + 2Bs + 2Cs + 2C

(s^2 + s + 1)   =   (s^2)(A + 2B) + s(2B + 2C) + (A + 2C)

Compare the coefficients of s^2, s and constant in above equation

A + 2B   =   1   -------------> (1)

2B + 2C   =   1   --------------> (2)

A + 2C   =   1   -----------------> (3)

Subtract equation (3) from equation (1)

2B + 2C   =   1

  A + 2C   =   1

(-)     (-)        (-)
-----------------------------------

-A + 2B   =    0   --------------------> (4)

Add equations (1) and (2)

  A + 2B   =   1

-A + 2B   =    0

(+)    (+)      (+)
-----------------------------------

4B = 1

B  =  1/4

Substitute B = 1/4 in equation (1)

A + 2(1/4)   =   1

A + 1/2   =   1

A   =   1 - 1/2

A  =  1/2

Substitute A = 1/2 in equation (3)

1/2 + 2C = 1

2C   =   1 - 1/2

2C  =  1/2

C  =  1/4

Substitute A, B and C values in Equation (T)

(s^2 + s + 1) / [(2s + 2) (s^2 + 1)]   =   [ (1/2) / (2s + 2) ] + [(s/4 + 1/4) / (s^2 + 1)]

(s^2 + s + 1) / [(2s + 2) (s^2 + 1)]   =   [ (1/2) / 2(s + 1) ] + [(s + 1)/4) / (s^2 + 1)]

 (s^2 + s + 1) / [(2s + 2) (s^2 + 1)]   =   [ 1 / 4(s + 1) ] + [(s + 1) / 4(s^2 + 1)]  

answered Dec 21, 2017 by homeworkhelp Mentor
reshown Dec 21, 2017 by bradely

Related questions

asked Jul 18, 2014 in ALGEBRA 2 by anonymous
...