Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

816,805 users

Partial Fractions

0 votes

asked Jan 2, 2018 in ALGEBRA 2 by MathGuy Novice
reshown Jan 2, 2018 by bradely

1 Answer

0 votes

The expression

 [ 2s^3 + 4s^2 + 4s + 12 ] / [(s^2 + 1)(s + 1)^2]

Consider

[2s^3 + 4s^2 + 4s + 12] / [(s^2 + 1)(s + 1)^2]   =   (As + B)/(s^2 + 1) + C/(s + 1) + D/(s + 1)^2 ---------> (T)

Take the LCM

[2s^3 + 4s^2 + 4s + 12] / [(s^2 + 1)(s + 1)^2]   =   [(As + B)(s + 1)^2] / (s^2 + 1) + [C(s^2 + 1)(s + 1)]/ (s + 1) + [D(s^2 + 1)] / (s + 1)^2

[2s^3 + 4s^2 + 4s + 12] / [(s^2 + 1)(s + 1)^2]   =   { [(As + B)(s^2 + 1 + 2s)] + [C(s^3 + s^2 + s + 1)+ [Ds^2 + D)] } [(s^2 + 1)(s + 1)^2]

2s^3 + 4s^2 + 4s + 12   =   As^3 + 2As^2 + As + Bs^2 + 2Bs + B + Cs^3 + Cs^2 + Cs + C + Ds^2 + D

2s^3 + 4s^2 + 4s + 12   =   (A+C)s^3 + (2A+B +C+D)s^2 + (A + 2B + C)s + (B + C + D)

Compare the coefficients of s^3, s^2, s and constant terms

A + C   =   2  --------------------------------->  (1)

2A + B + C + D   =   4  --------------------------------->  (2)

A + 2B + C   =   4  --------------------------------->  (3)

B + C + D   =   12  --------------------------------->  (4)

Substitute value of Eq (4) in Eq (1)

2A + 12   =   4

2A   =   4 - 12

2A   =   - 8

A   =   - 4

Substitute A = -4 in Eq (1)

- 4 + C   =   2

C  =  2 + 4

C   =   6

Substitute A = -4 and C = 6 in Eq (3)

- 4 + 2B + 6   =   4

2 + 2B  =   4

2B  =   4 - 2

2B  =   2

B   =   2/2

B  =  1.

Substitute B = 1 and C = 6in Eq (4)

1 + 6 + D   =   12

D   =   12 - 7

D  =  5

Substitute A = -4, B = 4, C = 6 and D = 5 in Eq (T)

[2s^3 + 4s^2 + 4s + 12] / [(s^2 + 1)(s + 1)^2]   =   (-4s + 1)/(s^2 + 1) + 6/(s + 1) + 5/(s + 1)^2

answered Jan 3, 2018 by homeworkhelp Mentor

Related questions

asked Jul 18, 2014 in ALGEBRA 2 by anonymous
asked Jul 18, 2014 in ALGEBRA 2 by anonymous
...