Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,704 users

Trig! inverse equations?

0 votes

I need help solving this sheet. 

I need steps also so I know how to do it for my exam. thank uou

asked Jul 11, 2014 in TRIGONOMETRY by anonymous

2 Answers

0 votes
  • 1). sin- 1 ( - √3/2).

sin(sin-1(x)) = x   for every x in the interval [-1, 1].

sin-1(sin(x)) = x   for every x in the interval [ - π/2, π/2]image.

= sin- 1 ( sin (- π/3))

= - π/3.

∴ sin- 1 ( - √3/2) = - π/3.

  • 2). sin(arccos(- 1/3)).

= sin(cos- 1 (- 1/3))

Apply formula : sin(cos- 1 (x)) = √(1 - x2).

⇒ sin(cos- 1 (- 1/3))

= √(1 - (- 1/3)2)

= √(1 - (1/9))

= √((9 - 1)/9)

= √(8/9)

= (2√2)/3.

sin(cos- 1 (- 1/3)) = (2√2)/3.

  • 4). sin- 1 ( sin (330)).

3300 in radians is 11π/6.

sin- 1 ( sin (330)) = sin- 1 ( sin (11π/6))

∴ sin- 1 ( sin (330)) = 11π/6.

  • 5). cos- 1 ( cos (7π/6)).

cos(cos-1(x)) = x     for every x in the interval [-1, 1]

cos-1(cos(x)) = x     for every x in the interval [0, π].

∴ cos- 1 ( cos (7π/6)) = 7π/6.

  • 6). csc(tan- 1(3/4)).

Apply formula : csc(tan- 1 (x)) = √(1 + x2)/x.

⇒ csc(tan- 1(3/4)) = √(1 + (3/4)2)/(3/4).

= 4√(1 + (9/16))/3

= 4√((16 + 9)/16)/3

= 4√(25/16)/3

= 5/3.

∴ csc(tan- 1(3/4)) = 5/3.

  • 7). sin[cos- 1(3/5) - tan- 1(7/13)].

Let cos- 1(3/5) = x  and  tan- 1(7/13) = y.

Then, cos x = 3/5  and  tan y = 7/13

If cos x = 3/5, then sin x = √(1 - cos2 x) = √(1 - (3/5)2) = 4/5.

tan y = opposite/adjacent = 7/13.

Phythagoras theorem : hyp2 = adj2 + opp2 .

hyp2 = 72 + 132

hyp2 = 49 + 169 = 218

hyp = √218.

⇒ cos y = adjacent/hypotenuse = 13/√218, and

    sin y = opposite/hypotenuse = 7/√218.

Apply formula : sin(x - y) = sin x cos y - cos x sin y.

Substitute cirresponding values.

sin(x - y) = (4/5)(13/√218) - (3/5)(7/√218)

= (52 - 21)/(5√218)

= 31/√218.

∴ sin[cos- 1(3/5) - tan- 1(7/13)] = 31/√218.

answered Jul 12, 2014 by lilly Expert
0 votes

8).

  • a).csc(sin- 1(1/x)).

Using reciprocal identities : csc x = 1/sin x.

csc(sin- 1(1/x)) = 1/[sin(sin- 1(1/x))].

= 1/(1/x)

= x.

∴ csc(sin- 1(1/x)) = x.

  • b). csc(tan- 1(√(9 - x2)/x)).

Use the formula : √(1 - x2)/x = tan(cos- 1 x).

√(9 - x2)/x = [√(1 - (x/3)2)/(x/3)] = tan(cos- 1 (x/3)).

⇒ csc(tan- 1(√(9 - x2)/x)) = csc[ tan- 1(tan(cos- 1 (x/3))) ]

= csc(cos- 1 (x/3))

= 1/sin(cos- 1 (x/3))

Use formula : sin(cos- 1 (x)) = √(1 - x2).

= 1/√(1 - (x/3)2)

= 3/√(9 - x2).

∴  csc(tan- 1(√(9 - x2)/x)) = 3/√(9 - x2).

answered Jul 12, 2014 by lilly Expert

Related questions

asked Jul 25, 2014 in TRIGONOMETRY by anonymous
...