Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,749 users

Differentiation questions (alot)

0 votes

 

Q1)

 

Q2)

 

Q3)

 

Q4)

 

Q5)

 

Q6)


asked Aug 10, 2014 in CALCULUS by zoe Apprentice
edited Aug 10, 2014 by zoe

5 Answers

0 votes

Q1)

a) f(x)=sin(6x)

Take derivative with respect to x

f'(x)=d/dx(sin(6x))

      =cos 6x d/dx(6x)

      =6cos 6x

b) f(x)=cos(3x^2+x-1)

Take derivative with respect to x

f'(x)=d/dx(cos(3x^2+x-1))

      =-sin(3x^2+x-1) d/dx(3x^2+x-1)

      =- (6x+1)sin(3x^2+x-1)

c) f(x)=tan(-4x+7)

Take derivative with respect to x

f'(x)=d/dx(tan(-4x+7))

      =sec^2(-4x+7) d/dx(-4x+7)

      =-4sec^2(-4x+7)

d) f(x)=sec(cosx)

Take derivative with respect to x

f'(x)=d/dx(sec(cosx))

      =sec(cosx)tan(cosx) d/dx(cosx)

        =sec(cosx)tan(cosx)(-sinx)

      =-sec(cosx)tan(cosx)sinx

 

e) f(x)=cotxsinx

Take derivative with respect to x

f'(x)=d/dx(cotxsinx)

Use product rule:d/dx(uv)=uv'+vu'

v=sinx    v' =cosx

u = cotx     u'= - cosec^x

f'(x)=cotxd/dx(sinx)+sinxd/dx(cotx)

      =cotx(cosx) +sinx(-cosec^2x)

        =(cosx/sinx)(cosx) +sinx(-1/sin^2x)

      =cos^2x/sinx-1/sinx

        =(cos^2x-1)/sinx

      =-(-cos^2x+1)/sinx

        =(sin^2x)/sinx

       =sinx

    

answered Aug 11, 2014 by bradely Mentor
edited Aug 11, 2014 by bradely
0 votes

f) f(x)=x^5cosecx

Take derivative with respect to x

f'(x)=d/dx(x^5cosecx)

Use product rule:d/dx(uv)=uv'+vu'

u=x^5    u' =5x^4

v = cosecx     v'= - cosecxcotx

f'(x)=x^5 d/dx(cosecx)+cosecxd/dx(x^5)

      =-x^5cosecxcotx +cosecx(5x^4)

         = -x^5cosecxcotx +5x^4cosecx

g) f(x)=e^cosecx

Take derivative with respect to x

f'(x)=d/dx(e^cosecx)

f'(x)=e^cosecx d/dx(cosecx)

      =-e^cosecx cosecxcotx

h) f(x)=x^6e^x

Take derivative with respect to x

f'(x)=d/dx(x^6e^x)

Use product rule:d/dx(uv)=uv'+vu'

u=x^6    u' =6x^5

v =e^x     v'= e^x

f'(x)=x^6 d/dx(e^x )+e^x d/dx(x^6)

      =x^6e^x +e^x(6x^5)

        =x^5e^x (x+6)

         =x^5 e^x(x+6)

 

i) f(x)=x^5lnx

Take derivative with respect to x

f'(x)=d/dx(x^5lnx)

Use product rule:d/dx(uv)=uv'+vu'

u=x^5    u' =5x^4

v =lnx     v'= 1/x

f'(x)=x^5 d/dx(lnx)+cosecxd/dx(x^5)

      =x^5(1/x) +lnx(5x^4)

        =x^4 +lnx(5x^4)

         = x^4(1+5lnx)

j) f(x)=e^x/(6+lnx)

Take derivative with respect to x

f'(x)=d/dx(e^x/(6+lnx))

Use Quotient rule:d/dx(u/v)=(vu'-uv')/v^2

u=e^x    u' =e^x

v = 6+lnx  v'=1/x

f'(x)=((6+lnx)d/dx(e^x)-e^xd/dx(6+lnx))/(6+lnx)^2

       =((6+lnx)(e^x)-e^x(1/x))/(6+lnx)^2

       =e^x(6+lnx-1/x)/(6+lnx)^2

    

 

 

    

answered Aug 11, 2014 by bradely Mentor
0 votes

Q2)

f(x) =(sinx+1)/(secx-1)

Take derivative with respect to x

f'(x)=d/dx((sinx+1)/(secx-1))

Use Quotient rule:d/dx(u/v)=(vu'-uv')/v^2

u=sinx+1    u' =cosx

v = secx-1  v'=secxtanx

f'(x)=((secx-1)(cosx)-(sinx+1)(secxtanx))/(secx-1)^2

       =((1-secx)-(sinxsecxtanx+secxtanx)/(secx-1)^2

               

       =((1-secx)-(tan^2x+secxtanx)/(secx-1)^2

answered Aug 11, 2014 by bradely Mentor
0 votes

Q3)

f(t) =tcostcott

Take derivative with respect to t

f'(x)=d/dt(tcostcott)

        =td/dt(costcott)+costcottd/dt(t)

         =t[costd/dt(cott)+cottd/dt(cost)]+costcott

 

       =t[cost(cosec^2t)+cott(-sint)]+costcott

       =t[cost(1/sin^2t)-cost/sint(sint)]+costcott

        =t[cottcosect-cost]+costcott

Q4)

f(y) =√(1-2tany)

Take derivative with respect to y

f'(y)=d/dy(√(1-2tany))

Use formula:d/dx(√x)=1/2√x

f'(y)=(1/2√(1-2tany))d/dy(1-2tany)

       =(1/2√(1-2tany))(-2sec^2y)

     =(1/√(1-2tany))(-sec^2y)

       = (-sec^2y/√(1-2tany))

answered Aug 11, 2014 by bradely Mentor
0 votes

Q5)

a)

f(x)=6(e)^x5

Take derivative with respect to x

f'(x)=d/dx(6(e)^x5 )

      =6(e)^x5 d/dx(x5)

      =30x^4(e)^x5

Again take derivative both sides

f''(x)=d/dx(-3x²sin x³)

Use product rule:d/dx(uv)=uv'+vu'

u=x²          v' =2x

v =sin x³     u'= 3x^2cos x³

f''(x)=-3[x²d/dx(sin x³)+sin x³d/dx(x²)]

      =-3[x²(3x²cos x³)+sin x³(2x)]

        =-3[3x4cos x³+2xsin x³]

----------------------------------

Q6)

f(x)=t^6ln(5t)

Take derivative with respect to t

f'(x)=d/dt(t^6ln5t)

Use product rule:d/dx(uv)=uv'+vu'

u=t^6    u' =6t^5

v =ln5t     v'= 5/t

f'(x)=t^6 d/dx(ln5t)+ln(5t)d/dt(t^6)

      =t^6(5/t) +ln5t(6t^5)

        =t^5(5) +ln5t(6t^5)

         = x^5(5+6ln5t)

answered Aug 11, 2014 by bradely Mentor

Related questions

asked Nov 5, 2014 in CALCULUS by anonymous
asked Nov 5, 2014 in CALCULUS by anonymous
asked Jul 23, 2014 in CALCULUS by anonymous
...